SKF Multilog On-line System DMx and temperature measurements

By Oscar van Dijk and Marcel de Boer • SKF

Introduction

The SKF Multilog On-line System DMx was introduced as an intrinsically safe, vibration based Machine Protection System. However, there have been requests for the device to include temperature measurements.

This is a common requirement to upgrade obsolete analog API 670 monitoring systems. These would often measure (for example) 16 channels of vibration and axial position, and 6 channels of temperature. Each temperature sensor chain would involve direct connection of a Resistive Temperature Detector (RTD) or Thermocouple to the monitor.

This application note describes how to address this situation with an SKF Multilog DMx.

The SKF Multilog On-line System DMx module.

RTDs and thermocouples

These are industry standard devices for sensing temperature. These devices operate on low currents and voltages. Thermocouple sensors (such as J or K type) use a very low voltage, and typically require special cold junction compensation. Both RTDs and thermocouples require linearization curves to convert the measured voltage (or current) to an accurate temperature reading.

With the exception of directly connected Eddy Current Probes (for radial vibration and axial position) the SKF Multilog DMx requires a linearized input. Hence, to handle RTDs and thermocouples, the SKF Multilog DMx requires an external temperature-current converter or "temperature transmitter."

Figure 1. Examples of industry standard devices such as RTDs and thermocouples.

Temperature Transmitters

By using an external temperature transmitter, temperature sensor signals can be linearized and converted to a current signal. This current signal is then sent to the SKF Multilog DMx and handled as a DC input.

Temperature transmitters are commonplace on the general instrumentation market. They are small, low power devices that use a two wire connection. Over these two wires, the devices are powered and the output signal is returned as a 4 to 20 mA signal to the SKF Multilog DMx.

These transmitters are available for use with both RTDs and thermocouples. Some models are programmable for the sensor type and measuring range used with the transmitter. This programmability makes these devices an ideal addition to the SKF Multilog DMx as a front-end temperature transmitter.

For Intrinsically Safe (IS) use, care must be taken to maintain the safety of the loop. By powering the transmitter from the SKF Multilog DMx, you are making sure that the power to any transmitter does not exceed the allowed parameters on the certification.

Figure 2. PR533x, example of a temperature to current transmitter.

However, the selected model must still have the correct "entity parameters" for IS use with the SKF Multilog DMx. This is discussed in more detail later.

Multiple vendors for these types of transmitters exist. SKF Condition Monitoring Center – San Diego has tested the SKF Multilog DMx with the PR533x range of modules from PR electronics – see **Figure 2**.

This model has entity parameters compatible for use with the SKF Multilog DMx in a hazardous area. The model can, of course, also be used in nonhazardous area applications.

Connection to the SKF Multilog DMx

The transmitter is connected directly to the SKF Multilog DMx. Power for the transmitter and current loop is supplied by the SKF Multilog DMx. In this case, a model CMMA 9920 must be used.

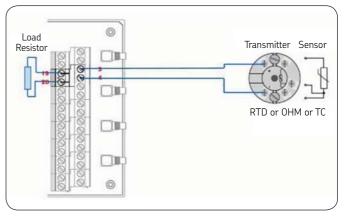


Figure 3. Temperature transmitter to SKF Multilog DMx connection.

An extract from the SKF Multilog DMx manual illustrating a typical connection to the SKF Multilog DMx is shown in **Figure 3**. The transmitter receives an RTD or thermocouple as its input, and provides a 4 to 20 mA current signal as its output. A load resistor on the SKF Multilog DMx is required to convert the current output from the transmitter to a voltage.

For each channel, the SKF Multilog DMx can supply up to 14 mA current at 20 volts. This power is enough for the selected temperature transmitter to work. However, you cannot create current, so this 14 mA supply is insufficient to give a 20 mA full scale range. This limitation can simply be overcome in practice by only using 50% of the full scale (such as, a 4 to 12 mA range). Since the temperature transmitter is programmable, the full scale can be adjusted to fit the requirements.

Temperature transmitter setup

This section describes a typical setup of a PR533x series "transmitter," using programming software that must be supplied with the device.

Temperature channel example

Sensor type: RTD 100 Ω input Measuring range: 0 to 150 °C OK Detection: Yes. Downscale. Load resistor: 1 000 Ω , 1%, 0.5 W

Transmitter programming

To match the required range, and the 14 mA limitation above, the transmitter is programmed for a full scale of 300 °C, which is illustrated in **Figure 4**.

PRetop 5333	
General Input Output Options Type RTD Elements General	×
Type: Pt 100 (DIN/IEC)	Temp. unit:
Input Temperature 0% 0 ℃ 100% 300 ℃	<u>R</u> esponse Time: 1 s
	Number of Rtd's in series

Figure 4. Input screen, PR533x series.

Figure 5 shows the associated output of the transmitter.

The programmed output is 4 to 20 mA and the action upon a defective sensor or cable is set to "downscale." This means that:

- at 0 °C, the current output is 4 mA
- at 150 °C, the current output is 12 mA
- In the case of a bad sensor or cable, current is 3.5 mA (or lower)

Type			-
Current General			 ▼
Output			
420 mA	-	0%	⁴ mA
		<u>1</u> 00%	²⁰ mA
Limits			
Max	-	Lo <u>w</u>	3.5 mA
		<u>H</u> igh	23 mA
Sensor Error Action			
Sensor Error Action			
Namur NE 43 Downscale	-		

Figure 5. Output screen, PR533x series.

Load resistor on SKF Multilog DMx input.

As show in **Figure 3**, a load resistor is required across the SKF Multilog DMx input terminals. The current (I) from the transmitter generates voltage (U) over the load resistor (R).

The voltage is calculated as $U = I \neq R$.

For a 1 000 Ω resistor, at 4 mA current, the voltage over the load resistor is 4 volts. At 12 mA, the voltage is 12 volts.

SKF Multilog DMx sensitivity

SKF Multilog DMx sensitivity is set using the following formula:

mV/EU = R · 16/Programmed Transmitter Range

In this case:

mV/EU = 1 000 · 16/300 = 53.33 mV/°C

Since the transmitter output is 4 mA when the temperature sensor measures 0 °C, an offset must be calculated to allow the SKF Multilog DMx to provide the correct result. The offset is calculated as:

Offset = Offset Current · R/Sensitivity:

In this case:

Offset = 4 mA · 1 000/53.33 = 75 °C

SKF Multilog DMx setup

This section describes how a CMMA 9920 module channel is configured using SKF Multilog DMx Manager software for the above example.

First, the sensor type is configured as a "Temperature C" sensor, see **Figure 6**.

DMx measurement channel properties
General Transducer Transducer power Measurement Waveform/FFT Orders
_ € Temperature
Name Temperature
Transducer type Frequency Range (Hz) Temperature (C) 💌 500 💌
4
Upload Download Save/Dwrld Save to DB Done Help
Upload Download Save/Dwnld Save to DB Done Help Read OK

Figure 6. SKF Multilog DMx measurement channel – general tab.

Then the Transducer OK settings are used to generate a sensor failure indication. A current below 3.8 mA, or a current above 12.5 mA, generates a sensor NOT OK, see **Figure 7**.

Next, the sensor power is configured for constant voltage, see **Figure 8**.

	T	Transducer	power Harry		form/FFT 0rder	. 1			
ci ici di	mansuucer	11011300000	Porror Meas	urement wave		*			
Po	ower supply			Power output	t				
C	Constant Cu	irrent Mode			nА				
	Noltage Ber	ulated Mode		C OFF					
	I voltage rites	alatoa moaoj							
Volta	ae regulation	mode is active	a on a ner cha	nnal nair hasis					
Volta	ge regulation	mode is activ	e on a per cha	nnel pair basis.					
					ge regulation mod	e, associated	channel 2 shall e	either be	
There	efore when m gured for Volt	easurement cl age Regulatio	hannel 1 is cor n or switched (, nfigured for Voltaj DFF.				either be	
Ther confi Volta	efore when m gured for Volt ge regulation	easurement cl age Regulatio mode, therefo	hannel 1 is cor n or switched l rre, cannot be	nfigured for Voltag DFF. combined with ci	 onstant current ba	ised sensor su	ipply.	aither be	
Ther confi Volta Whe	efore when m gured for Volt ge regulation n using Voltag	easurement cl age Regulatio mode, therefo ge regulation r	hannel 1 is cor n or switched (rre, cannot be node, combine	nfigured for Voltag DFF. combined with cr 2ea external driv	onstant current ba vers on the applic	ised sensor su able channel	ipply. pair.	either be	
Ther confi Volta Whe	efore when m gured for Volt ge regulation n using Voltag	easurement cl age Regulatio mode, therefo ge regulation r	hannel 1 is cor n or switched (rre, cannot be node, combine	nfigured for Voltag DFF. combined with cr 2ea external driv	 onstant current ba	ised sensor su able channel	ipply. pair.	either be	
There confi Volta Whe Whe	efore when m gured for Volt ge regulation n using Voltag n only requirin	easurement cl age Regulatio mode, therefo ge regulation r g single exter	hannel 1 is cor n or switched (ne, cannot be node, combine nal driver, switc	nfigured for Volta DFF. combined with cr 2ea external driv ch the power sup	onstant current ba vers on the applic ply option OFF or	ased sensor su able channel 1 the other chi	ipply. sair. annel.	either be	
Then confi Volta Whe Whe	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ	hannel 1 is cor n or switched (node, combine nal driver, switc re on a per cha	nfigured for Voltag DFF. combined with or 2ea external driv ch the power sup annel basis and re	onstant current ba vers on the applic ply option-OFF or equires Voltage re	ased sensor su able channel In the other cha gulation to be	ipply. pair. annel. disabled.	either be	
Then confi Volta Whe Whe Curre Selec	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation ction of 3.1mA	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con	hannel 1 is con n or switched (node, combine nal driver, switc re on a per cha istant current s	nfigured for Voltay DFF. 2ea external driv ch the power sup annel basis and re ource can be fre	onstant current ba vers on the applic ply option OFF or equires Voltage re ely selected for in	ased sensor su able channel the other cha gulation to be dividual chan	ipply. Jair. annel. disabled. nels.		
There confi Volta Whe Whe Curre Select In ca	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation stion of 3.1mA se one chann	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con hel of a chann	hannel 1 is con n or switched (node, combine nal driver, switc re on a per cha stant current s el pair is using	nfigured for Voltag DFF. 2ea external driv ch the power sup annel basis and re constant current	onstant current ba vers on the applic ply option-OFF or equires Voltage re	used sensor su able channel In the other cha gulation to be dividual channel other channel	ipply. bair. annel. disabled. tels. s will use constar	nt current	
There confi Volta Whe Whe Curre Select In ca	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation stion of 3.1mA se one chann	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con hel of a chann	hannel 1 is con n or switched (node, combine nal driver, switc re on a per cha stant current s el pair is using	nfigured for Voltag DFF. 2ea external driv ch the power sup annel basis and re constant current	onstant current ba vers on the applic ply option OFF or equires Voltage re ely selected for in source, then the	used sensor su able channel In the other cha gulation to be dividual channel other channel	ipply. bair. annel. disabled. tels. s will use constar	nt current	
There confi Volta Whe Whe Curre Select In ca	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation stion of 3.1mA se one chann	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con hel of a chann	hannel 1 is con n or switched (node, combine nal driver, switc re on a per cha stant current s el pair is using	nfigured for Voltag DFF. 2ea external driv ch the power sup annel basis and re constant current	onstant current ba vers on the applic ply option OFF or equires Voltage re ely selected for in source, then the	used sensor su able channel In the other cha gulation to be dividual channel other channel	ipply. bair. annel. disabled. tels. s will use constar	nt current	
There confi Volta Whe Whe Curre Select In ca	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation stion of 3.1mA se one chann	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con hel of a chann	hannel 1 is con n or switched (node, combine nal driver, switc re on a per cha stant current s el pair is using	nfigured for Voltag DFF. 2ea external driv ch the power sup annel basis and re constant current	onstant current ba vers on the applic ply option OFF or equires Voltage re ely selected for in source, then the	used sensor su able channel In the other cha gulation to be dividual channel other channel	ipply. bair. annel. disabled. tels. s will use constar	nt current	
There confi Volta Whe Whe Curre Select In ca	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation se one chann se as well, wh	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con hel of a chann	hannel 1 is con nor switched (node, combine nal driver, switc re on a per cha stant current s el pair is using not. There is n	higured for Volka; DFF. combined with cr 2ea external drin sh the power sup annel basis and r constant current o option to selec	onstant current ba ers on the applic ply option OFF or equires Voltage re ely selected for in source, then the t OFF once const	ased sensor su able channel j the other chi gulation to be dividual channel ant current is	ipply. bair. annel. disabled. hels. s will use constan used on a chann	nt current iel pair.	
There confi Volta Whe Whe Curre Select In ca	efore when m gured for Volt ge regulation n using Voltag n only requirin ent Regulation stion of 3.1mA se one chann	easurement cl age Regulatio mode, therefo ge regulation r g single extern mode is activ or 14mA con hel of a chann	hannel 1 is con n or switched (node, combine nal driver, switc re on a per cha stant current s el pair is using	nfigured for Voltag DFF. 2ea external driv ch the power sup annel basis and re constant current	onstant current ba vers on the applic ply option OFF or equires Voltage re ely selected for in source, then the	used sensor su able channel In the other cha gulation to be dividual channel other channel	ipply. bair. annel. disabled. hels. s will use constan used on a chann	nt current	

Figure 8. SKF Multilog DMx measurement channel – transducer power Tab.

Finally, in **Figure 9**, the measurement defaults to a "deg C" unit and, as temperature is a DC measurement, the AC filtering is set to "Off," both AC and DC smoothing are set to 1 second.

The 75 °C offset calculated, is entered in the "Offset" field as shown in **Figure 9**.

Any alarms required from the SKF Multilog DMx are set using the normal alarm settings pages.

DMx measurement channel prope	rties	X
	Measurement Waveform/FFT Orders	
Details AC units deg C	DC units deg C	TX DK - low threshold 3.8 🜩 V
AC sensitivity (mV/deg C) 1000.00 🚖	DC sensitivity (mV/deg C) 53.33 🚔	TX OK - high threshold 12.5 🐳 V
TX Fail definition	*	
Configuration Voltage only	▼ Use default active conditions	Active conditions Calibration failure Calibration timeute ECP calibration im progress ECP library not found ECP CAL record not found
Installation details Location Unknown	Orientation angle	Output sense Unknown
	load Download Save/Dwnld	Save to DB Done <u>H</u> elp
Read OK		

Figure 7. SKF Multilog DMx measurement channel – transducer tab.

DMx measurement channel proper	ties	X
General Transducer Transducer power	Measurement Waveform/FFT Orders	
Overall level monitoring		
Measurement units	Offset Zero 75.00 deg C Zero channel	
Filter Type © Off	3 dB frequencies (Hz)	
C Lowpass		
C Highpass		
C Bandpass		
Attenuation	Frequency [Hz]	
Level measurement		
Desired AC level smoothing time (s)	Calculated value (s) 1.332 (TC=14)	
Desired DC level smoothing time (s)	Calculated value (s) 1.332 (TC=14)	
1 I O Uplo	ad Download Save/Dwnld Save to DB Done Help	,
Read OK		

Figure 9. SKF Multilog DMx measurement channel - measurement tab.

Use in an Intrinsically Safe environment

Since the SKF Multilog DMx is certified for use in ATEX Zone 1, it is required to check if the combination of any temperature transmitter and the SKF Multilog DMx are a safe solution.

To do this, we must look at the IS parameters for the SKF Multilog DMx and the transmitter. If these match, then the combination of the two devices is a safe system. The necessary calculations are explained in the SKF Multilog DMx manual. For this example, the most relevant calculations are shown below.

PR533x entity parameters

These are found on the device's ATEX certificate. For the model PR5333D, the maximum supply and input parameters are:

 $U_i = 30 \text{ V}; I_i = 120 \text{ mA}; P_i = 0.84 \text{ W}; C_i = 1 \text{ nF}; L_i = 10 \text{ }\mu\text{H}.$

(From ATEX certificate KEMA 03ATEX1535X issue 2, dated 12 January 2009)

SKF Multilog DMx entity parameters

The maximum output parameters for the SKF Multilog DMx are:

 $U_o = 26.5V$; $I_o = 90.9$ mA; $P_o = 0.432$ W; $C_i =$ Negligible; $L_i =$ Negligible; $C_{max} = 95$ nf; $L_{max} = 3$ mH

(From ATEX certificate BVS07ATEXE075X dated 4 July 2007)

Entity parameters check

The above lead to the following Parameter Evaluation:

 $\begin{array}{ll} U_{o}(26.5\,V) \leq U_{i}(30\,V) & \mbox{ t Comply} \\ I_{o}(90.9\,mA) \leq I_{i}(120\,mA) & \mbox{ t Comply} \\ P_{o}(0.432\,W) \leq P_{i}(0.84\,W) & \mbox{ t Comply} \end{array}$

Cable check

To comply with ATEX rules, a cable evaluation for the use of the temperature transmitter must also be made. This is necessary even if the transmitters are in same enclosure as the SKF Multilog DMx.

The calculation is based upon the safety descriptions of both devices, indicating the maximum allowed capacitive and inductive load. The following cabling requirements apply for meeting the Group II C requirement:

Capacitance: $C_{max} = C_{ext} - C_i$

where

C_{max} = Maximum permissible cable capacitance

C_{ext} = Maximum permissible capacitance that may be connected to the SKF Multilog DMx channel

C_i = Internal capacitance of the temperature transmitter

Hence, in this case: $C_{max} = 0.095 - 0.001 = 0.094 \,\mu\text{F}$

This means that, using a typical 120 pF/m cable, the distance between the transmitter and the SKF Multilog DMx module is limited to:

 $0.094 \,\mu\text{F}/120 \,p\text{F} = 0.094/0.000120 = 94/0.120 = 780 \,meters$

Therefore, if the transmitter is located remotely, the SKF Multilog DMx – perhaps located in the RTD sensor head on the bearing cap – then the SKF Multilog DMx needs to be within 780 meters. In practice it would be only a few meters away in a junction box on the machine skid.

Intrinsically Safe conclusion

The above calculations show that the SKF Multilog DMx CMMA9920 Module can be used in combination with the PR electronics model 5333D Transmitter for classification Ex ia IIC.

The same combination can also be used, of course, in a non-IS application, as shown in **Figure 10**.

Note

For any IS installation, the system must be checked with the newest certificates for all connected equipment. The calculation above is an example using the certificates valid at the time of writing.

Summary

Use of external, programmable, temperature transmitters can provide an easy and flexible means of supporting temperature measurements with the SKF Multilog On-line System DMx, enhancing the value proposition of the system.

A transmitter model has been identified and tested and shown to be safe for use with the SKF Multilog DMx in both IS and non-IS applications.

Figure 10. SKF Multilog DMx and PR5333D transmitters (in non-IS application).

Please contact: **SKF USA Inc. Condition Monitoring Center – San Diego** 5271 Viewridge Court · San Diego, California 92123 USA Tel: +1 858-496-3400 · Fax: +1 858 496-3531

Web: www.skf.com/cm

® SKF and Multilog are registered trademarks of the SKF Group.

All other trademarks are the property of their respective owners.

© SKF Group 2009

The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.